M1.	(a)	(i) Fe + 2HCl \rightarrow FeCl ₂ + H ₂ (allow ionic formulae)	
		or Fe + $2H^* \rightarrow Fe^{2*} + H_2$	1
	(ii)	PV = nRT n = PV/RT (allow either formula but penalise contradiction)	1
		$n = \frac{\frac{110000 \times 102 \times 10^{-6}}{8.31 \times 298}}{$	1
		= 4.53 × 10⁻₃ (mol) (answer must have at least 3 sig. figs. Ignore units)	1
	(iii)	Moles of iron = 4.5(3) × 10⁻₃ mol (allow conseq on (a)(ii))	
		(or = $4.2(5) \times 10^{-3}$ if candidate uses given moles of hydrogen)	1
		Mass of iron = $4.53 \times 10^{-3} \times 55.8 = 0.253$ g (mark is for method mass = moles × A_r) (Mass of iron can be 56)	1
	(iv)	0.253 × 100/0.263 = 96.1 % (mark is for answer to 2 sig. figs.) (allow conseq on mass of iron. E.g. = 90% from 4.2(5) × 10⁻³ moles of H₂ and Fe)	
		(Do not allow answers greater than or equal to 100%)	1
(b)) (i)	Fe ^₂ → Fe ^₃ + e [₋] (ignore state symbols)	1
		$Cr_{2}O_{7^{2-}} + 14H^{+} + 6e^{-} \rightarrow 2Cr^{3+} + 7H_{2}O$	1
		$Cr_{2}O_{7^{2-}}$ + 14H [*] + 6Fe ²⁺ \rightarrow 2Cr ³⁺ + 7H ₂ O + 6Fe ³⁺	1
	(ii)	Moles of dichromate = moles Fe²+/6	

	= 4.53 × 10⁻³/6 = 7.55 × 10⁻⁴ (Allow conseq, mark is for method (a)(iii)/6)	1	
	Volume of dichromate = moles/concentration (= (7.55 × 10 ^{-₄} × 1000)/0.0200) (mark is for this method)	1	
	V = 37.75 (cm ³) (allow 37.7 to 37.8, allow no units but penalise wrong units) (allow conseq on moles of dichromate) (if value of 3.63 × 10 ⁻³ used answer is 30.2 to 30.3, otherwise ans = moles Fe ²⁺ /0.00012) (if mole ratio wrong and candidate does not divide by 6, max score is ONE for volume method)	1	
(iii)	(KMnO₄) will also oxidise (or react with) Cl⁻ (or chloride or HCl)	1	[14]

M2.	(a)	Ti(IV) [Ar]	
		Or 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	1
	Ti(II	I) [Ar]3d ¹	
		Or 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹	1
	Ti(II	I) has a d electron that can be excited to a higher level	
		Allow idea that d electrons can be excited to another level (or move between levels)	
			1
	Abs	orbs one colour of light from white light	
		Allow idea that light is absorbed	1
			1
	Ti(I)	V) has no d electron so no electron transition with ray equal to that of visible light	
	ene	Allow $Ti(IV)$ has no d electrons	
			1

(b)	[Cu($NH_3)_4(H_2O)_2]^{2*}$	1
	[Cr(C	OH)₀]³-	1
	[CuC	[₄] ²⁻	1
(c)	(i)	Rapid determination of concentration Or easy to get many readings	1
		Does not use up any of the reagent/does not interfere with the reaction	
		Or possible to measure very low concentrations	1
	(ii)	Curve starts with small gradient (low rate)	1
		Because negative ions collide so <i>E</i> _a high	1
		Curve gets steeper	1
		Because autocatalyst (Mn ²⁺) formed	1
		Curve levels out approaching time axis Can score this mark and next one ONLY with simple curve	
		(that is curve with gradually decreasing gradient)	1
		Because MnO₄⁻ ions used up <i>5 max</i>	1

M3. (a) Species $[Co(H_2O)_6]^{2*}$

[15]

	Precipitate	$Co(H_2O)_4(OH)_2$	1
(b)	[Co(NH₃) ₆]²⁺		1
(c)	Reaction Reactant	Oxidation Oxygen in the air	1
(4)	0	Lo din e	
(a)	к Explanation	$[Co(H_2O)_6]^{3+}$ oxidises I^- to I_2	1 1

1

[7]

1

M4.		(a)	FeCl ₃ accepts electron pairs from water	1
		He	nce acts as a Lewis acid	1
		[Fe	(H₂O)₀]³⁺ donates protons	1
		He	nce acts as a Bronsted-Lowry acid	1
	(b)	The	e Fe² ion has a smaller charge to size ratio	1
		Hen effe	ice less polarising than Fe³ or less weakening ct on O-H bonds	

(c)	(i)	$V_2O_5 + SO_2 \to V_2O_4 + SO_3$	1
		$V_2O_4+O_2\toV_2O_5$	1

[13]

M5.		(a) Fe + $H_2SO_4 \rightarrow FeSO_4 + H_2$	1
	(b)	$MnO_4^- + 8H^+ + 5Fe^{2*} \rightarrow Mn^{2*} + 4H_2O + 5Fe^{3*}$	1
	(c)	Moles MnO₄⁻ in 19.6 cm³ = 19.6 × 0.022 × 10⁻³ = 4.312 ×10⁻⁴	1
		Moles Fe²⁺ in 25 cm³ = 5 × 4.312 × 10⁻⁴ = 2.156 × 10⁻³	1
		Moles Fe²⁺ in 250 cm³ = 10 × 2.156 × 10⁻³ = 2.156 × 10⁻²	1

Mass Fe^{2*} = moles × A_r
$A_r = 2.156 \times 10^{-2} \times 55.8 = 1.203 \text{ g}$

Percentage by mass of carbon = (1.270 – 1.203) × 100/1.270 = 5.28%

1

1

1

1

- (d) Repeat the titration and take an average of the concordant results
- (e) Analyse several samples from different parts of the molten iron